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STRUCTURAL REPRESENTATIONS IN THE MECHANICS 
OF ELASTO-PLASTIC STRAINS 

M.Ia. LEONOV and E.R. NISNEVICH 

There is proposed a representation of inelastic (plastic) strain as a certain struct- 

ural distortion in an elastic body. There is considered the possibility of using 
such an inelastic strain representation to investigate the processes of microcrack 
development, and to solve elasto-plastic problems. The structural imperfectionsand 
defects causing states of stress in the body, which are obtained in problems about 
the tension of an infinite plane with a hole in /1,2/, are determined. 

1. Fundamental statements. Let a certain structural distortion, defined by the com- 

ponents of the inelastic (plastic) strain tensor Iljk(j, k =x, y,z) occur in a solid. Quantitat- 

ively, the inelastic strain is determined by the difference between the total yjkandtheelastic 

:'ike strains, or 

rjk = ~ + ~ _ y;k (1.1) 

where Uj, uk are displacement components in the direction of the appropriate axes. It is as- 

sumed that the elastic strain is determined in terms of stress by Hooke's law, while the 

plastic strain is the result of slip along the interatomic planes in the elastic body (here 

and henceforth the repeated subscripts are omitted) 

rr + ry + rz = 0 

We shall henceforth consider the plane problem (all the quantities are functions of 

variables I and y and rx. = yvz= u), including plane strain characterized by the condition 

vz = 0 

and the plane state of stress for which 

0, = 0 

Expressing the stress tensor by Hooke's law in terms of the elastic strain tensor, 

taking (1.1) into account, the equilibrium equations in displacements can be represented 

the plane problem in such a form (G is the shear modulus) /3/: 

For plane strain 

ar 
px=-G 2+-$ i , , x=3--4v 

where v is the Poisson's ratio, and in the case of theplane state of stress 

(1.2) 

two 

(1.3) 

(1.4) 

and 

for 

(1.5) 

(1.6) 

(1.7) 
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The following forces, referred to unit length of boundary (n is the outer normal to the 
boundary) must be added to the external loads on the boundary L of the plastic zone: 
For plane strain 

XL = G [r, cos (nz) + TIv cos @/)I .8) 

Y, = G V, cos (ny) + r,, cos (ns)l (x, y E L) 

For the plane state of stress 

XL=G [(r,- &r,)COS(Wt) + r%VCOS(nL')] (1.9) 

YL.=G [(rv-&) ~,cos(~Y) i r,~~~(el (X,Y EL) 
4 

It follows from equations (1.5) that the problem of determining the displacements for a 
given inelastic strain (1.1) reduces /3/ to the plane problem of the theory of elasticitywith 
additional (fictitious) mass (1.5) or (1.7) and surface loads (1.8) or (1.9). 

2. Direct Structural Problem. Let us determine the state of stress caused by the 
given strains (1.1). This state of stress is related by Hook's law to the elastic strainsand 
can be represented as the difference in the fictitious stress components Crjk' (due to the 
fictitious loads), and the stress calculated by Hooke's law in terms of the inelasticstrains 

/3/. It follows from the above that for plane strain there will be 

0, + cU = u,O -t c,o - G (r, + r,) (2.1) 

US - u% + 2iu,, = uvo - CT%' f 2iu,,"-G (r, - r, + 2iI',) 

and for the plane stressstatethere will be 

(2.2) 

The second relationship remains the same as for plane strain. 
We shall still consider the body unbounded and the inelastic strain tensor componentszero 

on the boundary of the slip domain. Then the Kolosov-Muskhelishvili functions for the 
fictitious stresses are found /4/ as integrals over the slip domain D , of the stress func- 
tions corresponding to a lumped force applied at an arbitrary point z,, = z,, + iy, of the infin- 
ite plane 

@e (4 = - 1s & dwh, ‘f’dz)=&$-(&$zodyo, A=- 
D lJ 

(2.3) 

The continuous function, twice-differentiable in the domain, which is zero on the bound- 
ary can be written as follows 

r(~,y)=-_~~lInradl+~S~A1'lnred~~dy, 

r* = (5 - z# +" (y - yO)* 
D 

(2.4) 

Here n is the external normal to the line L and I is the length of this line which character- 
izes the location of the point (so, y,,). 

Representing the last terms in (2.1) and (2.2) in the form of integrals by means of (2.4), 
and integrating by parts in (2.3), we obtain the stress functions due to the structural distor- 
tion (transformation) in the form: 

@ (4 = - & [$s P(G, ydln(z - ZO) h&o + 5 PL(~~~~ (2 --ddl] (2.5) 

(2.7) 

where for the plane state of stress 
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and for plane strain 

x = PAT,, v ar, 
x1.= -Tan 

The quantity p(xo, y,) is the component of the strain incompatibility tensor /5/ for the 

plane state of stress and for plane-plastic strain (r,=O). 

From a comparison of the expressions (2.5) obtained and the state of stress /6/ of a 
wedge dislocation in an infinite plane, it is seen that the state of stress caused by the 
structural transformation can be represented as the stress from wedge dislocations distrubut- 
ed over the domain D with the density p(zO,yO) and over the houndary of the domain with the 
density PL(~). 

To find the state of stress occuring from the structural transformation made in an arbit- 

rary simply-connected body, it is evidently necessary to determine the stress from a wedgedis- 
location in this body, and then to evaluate the appropriate integrals over the slip domainand 
its boundary. A doubly-connected body is examined below (Sect-l). 

3. Inverse structural problem. We designate the determination of the inelastic 
strains causing a known state of stress as such a problem. It is solved in two stages. First 
is the calculation of the structural imperfections (dislocations) in given stresses,andsecond 

is the determination of the inelastic strains in the imperfections found. In general the 
second stage does not have an unique solution /3/. To predefine the problem, the history of 

the origin of the state of stress must be known, which will permit finding the slip line at 

each instant, and distributing the imperfections over the domain D; in principle, the in- 

elastic strain may thereby be found. 
The problem is solved sufficiently simply in the first stage if it is conceived that the 

strains in whose terms the densities of the wedge-type dislocations are expressed, p(z,, y,) 
and pL(E), are obtained during unloading, i.e., they are determined by Hooke's law in terms 

of the given stress components. 
Then, taking account of conditions (1.3) and (1.4), we find from (2.6) 

P(%Yo) = - + A& + bU) (3.1) 

Here x is determined by the last formulas in (1.6) and (1.7), respectively, fortheplane 

strain and the plane state of stress. 

To find the density of the wedge-type dislocations distributed over the boundary L of 

the slip domain, the derivatives of the strains in (2.7) must be evaluated during unloading, 

in terms of discontinuities in the derivatives of the stress components on the line L 

I .i 
PLm=- 8G 

x L a (3, + Q~) 
an 1 

(3.2) 

The square brackets denote discontinuities of the quantities within them on the slip do- 

main boundary; it is calculated upon going from points within the domain to points outsidethe 

domain. Let us note thattheequilibrium equations were used in obtaining (3.1) and (3.2). 

4. Examples. In plane with a circular hole (of radius R), let the yield point be 

reached at infinity under the effect of an axisymmetric load. Then an additional loading oc- 

curs such that the stress at infinity is 0% = qr, U" * 92. It is assumed that the plasticity 

domain will be expanded monotonically. For such additional charges we consider two ideal 

plasticity problems in which the resistance to shear /7/ is considered a constant equaltothe 

yield point (tr). 

L.A. Galin problem. In a polar coordinate system, the stress components in a plast- 

icity zone are: 

o,=zrTln f, o,=2T~ I+ In+- ( ) , Tr’F =o (4.1) 

to which the complex potentials 

(4.2) 

correspond. 
The Muskhelishvili stress functions in the elastic domain will be /l/ 
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(4.3) 

)I 

The boundary L between the domains is an ellipse whose exterior is mapped on the exterior 
of a unit circle by the function 

2 = b (5 i- h/Q (4.4) 

The solution presented is valid while the maximal tangential stress is in areas perpen- 
dicularto the plane of load action. For the majority of materials (0.5 ‘> Y > 0.3) , this con- 

dition is satisfied for b (1 + h)lR.<2.5. 
The sum of the normal stresses (4.1) is a harmonic function. It then follows from (3.1) 

that there are no structural imperfections distributed over the plasticity domain, i.e. 

p (r0, Y,) = 0. 
The derivative of the sum of the normal stresses is discontinuous on the boundary ,C of 

the slip domain. This means that wedge-type dislocations are introduced, whose density canbe 
found from (3.2) 

(4.5) 

Let us make a slit from the contour of the circular hole to infinity. Then the relative 
displacement and the rotation of the sections at the site of the slit will be determined by 
the stress (elastic strain) components on the contour itself. 

That relative displacement of the sections for which a ring dislocation with the angleof 
divergence 

a = - 4nzT (1 - v)/G (4.6) 

is formed, will evidently correspond to the state of stress (4.1). 
Therefore, structural imperfections (wedge-type dislocations) and defects (ring-like dis- 

locations) are obtained which occur in a plane with a circular hole in the deformationprocess 
considered. 

Theorem. The state of stress in the L.A. Galin problem is the state of stress occuring 
in an elastic plane with a hole due to an external load, structural imperfections (4.5), and 
the ring dislocation (4.6). 

For the proof we evaluate the state of stress due to each of the factors. 
The Muskhelishvili functions due to the external loads are /4/ 

(4.7) 

To evaluate the state of stress due ot the structural imperfections, we represent the 
stress functions for a wedge dislocation of power E inserted at an arbitrary point (20) of the 
infinite plane, in the form /6/: 

@(z) = - 4&q ln(z - a)* 
EC& 

Y(z) =4n(1 -v) (. _ZO) (4.8) 

These functions are determined to the accuracy of all-around tension at infinity. Using 
them, we obtain the Muskhelishvili functions for a wedge-type dislocation placed at an arbit- 
rary point of the infinite plane with circular hole of radius R 

(4.9) 

The state of stress from the ring-like dislocation is determined as the stress from a 
wedge-type dislocation in a plane with a circular hole at its center 
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Keeping in mind that the boundary L between the plastic domain and the elastic zonegoes 
over into the unit circle y by the transformation (4.4), the state of stress from the wedge- 
type dislocations inserted on this boundary can be written in the form of an integraloverthe 
contour y . Taking account of (4.5)and (4.9), we obtain 

(4.11) 

Evaluating the last integrals, we find the stress functions due to wedge dislocations distri- 
buted on the boundary --- 

In the plastic domain (1.~ -j- vz" - 4W) < 2b) 

(4.12) 

In the elastic domain (12 + 1/z2 - 4w1 > Zb) 

a (2) = - -ij- ” In (z + I/z% - 4hb*) + (q?;zF)RR3 

ffrL (4 = TT 
3hR* 21 _ .!!&I~ H__. q] _ (91 +;d R” 

(4.13) 

It can be confirmed that 

QD,,, (2) = Qfq (4 + @r (4 + @L (4 (4.14) 

Y,,z (2-f = ‘I,-, (2) + Yk (2) + YL (4 

This means the theorem is proved. 

G.P. Cherepanov problem /2/. A thin plate with a circular hole, stretched beyond 
the elastic limit by the loads considered above, is considered. The stress components in the 
plastic domain will be 

c&=27+ -4), o,=zar, ?rt,cp=o (4.15) 

An oval, whose exterior is mapped conformally on the exterior of a unit circle by the func- 
tion 

o(5) = 
R(zf2+oj~ !?I f%--J?r 
c(& - 4)l"J ’ 

C= 
2TT (4.16) 

is the boundary between the plastic domain and the elastic zone. The parameter a is the real 
root of the cubic equation 

a3+4a+ 8 (qr - n1) 
ql+ q,-447r 

= 0 

The Muskhelishvili functions in the elastic zone are 

rD([)=22T_*+~a 

'fl'(Q_.& _ aCZT 5' (1 + 5? r2 @f 4) 5"-- a (4 - 3aZ)l 
(2F+a)"(252- 3a) 

(4.17) 

For unloading not to occur in the plastic domain, the parameters a and c should satisfy the 
conditions O<a<9/ 9, --1 (C (-0.5. 

The sum of the normal stresses (4.15) is not a harmonic function in this case, and the 
density of the wedge-type dislocations distributed over the domain does not equal zero 

TTR 

J+)= (1+v)GiJ 
(4.18) 

The density of the structural imperfections distributed over the boundary of the elastic 
and plastic zones is found analogously to the previous problem as 
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+ t4 + 3aa) alil 
pL(')=- (l+v)G[4+az+2a(L+f)] an 

(4.19) 

In addition to the imperfections found in the problem under consideration, there is, ex- 
actly as for plane strain, a structural defect in the form of a ring-type dislocation with 

the parameter 

2ntr 
a=-- (4.20) 

Just as had been done in the L.A. Galin problem, it can be shown that the stateofstress 
(4.15) and (4.17) obtained by G.P. Cherepanov in solving the elasto-plastic problem is the 
state of stress occurring in an elastic body due to the structural imperfections (4.18) and 
(4.19), the defect (4.20), and the given external load. 

Structural imperfections have a finite magnitude in a real solid and are lumped in quite 
small volumes. The kernels of these imperfections are sharp stress concentrators and micro- 
cracks are actually always formed ahead of them. Material rupture is evidently associated 
with this process. 

A discrete model must be introduced for a strict examination of fracture processes. HOW- 
ever, in any cases of developed plastic strain, the density of continuously distributedstruct- 
ural distortions can also be a characteristic of the strength of the material. 

Representation of the plastic strain of a solid in the form of a structural trarsforma- 
tion permits its consideration as a single elastic body in which structural distortions occur, 
when solving boundary value problems of the mechanics of inelastic strains. There is here no 
need to separate the body into elastic and plastic parts with unknown boundaries, which af- 
fords the possibility of a more simple and strict formulation of the elasto-plastic problem. 
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